Designing new strategy for controlling DNA orientation in biosensors

نویسندگان

  • Chao Feng
  • Hong-ming Ding
  • Chun-lai Ren
  • Yu-qiang Ma
چکیده

Orientation controllable DNA biosensors hold great application potentials in recognizing small molecules and detecting DNA hybridization. Though electric field is usually used to control the orientation of DNA molecules, it is also of great importance and significance to seek for other triggered methods to control the DNA orientation. Here, we design a new strategy for controlling DNA orientation in biosensors. The main idea is to copolymerize DNA molecules with responsive polymers that can show swelling/deswelling transitions due to the change of external stimuli, and then graft the copolymers onto an uncharged substrate. In order to highlight the responsive characteristic, we take thermo-responsive polymers as an example, and reveal multi-responsive behavior and the underlying molecular mechanism of the DNA orientation by combining dissipative particle dynamics simulation and molecular theory. Since swelling/deswelling transitions can be also realized by using other stimuli-responsive (like pH and light) polymers, the present strategy is universal, which can enrich the methods of controlling DNA orientation and may assist with the design of the next generation of biosensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advancement in electrochemical DNA-biosensors for GMOs detection: A review

Genetically modified organisms (GMOs) are plants or animals whose genetic make-up has been transformed by recombinant DNA technology, which has new features such as resistance to herbicides, virus and insect. Recently, genetic modification of food products has increased in order to reduce world poverty and hunger and increase food production However, the impact of GMOs on the human health is a ...

متن کامل

Direct DNA Immobilization onto a Carbon Nanotube Modified Electrode: Study on the Influence of pH and Ionic Strength

Over the past years, DNA biosensors have been developed to analyze DNA interaction and damage that have important applications in biotechnological researches. The immobilization of DNA onto a substrate is one key step for construction of DNA electrochemical biosensors. In this report, a direct approach has been described for immobilization of single strand DNA onto carboxylic acid-functionalize...

متن کامل

Amplicon secondary structure prevents target hybridization to oligonucleotide microarrays.

DNA microarrays that are used as end-point detectors for PCR assays are typically composed of short (15-25 mer) oligonucleotide probes bound to glass. When designing these detectors, we have frequently encountered situations where a probe would not hybridize to its complementary, terminally labeled PCR amplicon. To determine if failures could be explained by general phenomenon such as secondary...

متن کامل

High performance liquid chromatographic analysis of reduction products of a thiolated DNA for immobilization on gold nanoparticles

DNA-based nano-biosensors are emerging scope in the field of biosensors. Many synthetic single stranded functional DNAs have been applied for development of such sensors, recently. Immobilization of DNA oligonucleotides on the surface of gold nanoparticles is a key step in the development of most colorimetric nano-biosensors. The bound DNA is usually thiolated and forms Au-S covalent bond to th...

متن کامل

A New Control Strategy for Controlling Isolated Microgrid

Microgrid control in isolated mode is a highly important subject area. In the present paper, a new method is used for controlling the isolated microgrids. This method was used based on the classification of the microgrids into two groups, namely fast-dynamic (battery and flywheel) and slow-dynamic (diesel generator, electrolyzer, fuel cell). For the microgrid components with fast dynamics, a se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015